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Abstract
Environmental DNA (eDNA) sampling is an increasingly important tool for answer-
ing ecological questions and informing aquatic species management; however, 
several factors currently limit the reliability of ecological inference from eDNA 
sampling. Two particular challenges are (1) determining species source location(s) 
and (2) accurately and precisely measuring low concentration eDNA samples in 
the presence of multiple sources of ecological and measurement variability. The 
recently introduced eDNA Integrating Transport and Hydrology (eDITH) model 
provides a framework for relating eDNA measurements to source locations in riv-
erine networks, but little empirical work has been done to test and refine model 
assumptions or accommodate low concentration samples, that can be systematically 
undermeasured. To better understand eDNA fate and transport dynamics and our 
ability to reliably quantify low concentration samples, we developed a hierarchical 
model and used it to evaluate a fate and transport experiment. Our model addresses 
several low concentration challenges by modeling the number of copies in each PCR 
replicate as a latent variable with a count distribution and conditioning detection 
and quantification on replicate copy number. We provide evidence that the eDNA 
removal rate declined through time, estimating that over 80% of eDNA was removed 
over the first 10 m, traversed in 41 s. After this initial period of rapid decay, eDNA 
decayed slowly with consistent detection through our farthest site 1 km from the 
release location, traversed in 67.8 min. Our model further allowed us to detect extra-
Poisson variation in the allocation of copies to replicates. We extended our hierar-
chical model to accommodate a continuous effect of inhibitors and used our model 
to provide evidence for the inhibitor hypothesis and explore the potential implica-
tions. While our model is not a panacea for all challenges faced when quantifying 
low-concentration eDNA samples, it provides a framework for a more complete 
accounting of uncertainty.
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1  Introduction

Environmental DNA (eDNA) approaches are increasingly being used to estimate 
ecological parameters like species distributions (Carraro et  al. 2018), abundance 
(Rourke et al. 2022), and phenology (Searcy et al. 2022) due to their detection sen-
sitivity, wide applicability across species, and cost efficiency, among other reasons 
(Jo and Yamanaka 2022). Further, eDNA sampling can be a particularly useful tool 
for aquatic invasive species monitoring, potentially allowing for early detection and 
eradication (Larson et al. 2020; Morisette et al. 2021; Sepulveda et al. 2020). How-
ever, across many applications of eDNA monitoring in aquatic environments, the 
reliability of ecological inference can be reduced by (1) uncertainty in the source 
location of detected eDNA (Carraro et al. 2018; Jo and Yamanaka 2022) and (2) dif-
ficulties measuring site and sample eDNA concentrations with minimal bias while 
accounting for all relevant sources of uncertainty (Ellison et al. 2006; Shelton et al. 
2019; Espe et al. 2022). Both of these factors have the potential to reduce the effec-
tiveness of eDNA sampling for management action, depending on their magnitude 
and how well they are addressed in experimental/monitoring design and statistical 
analysis.

A key requirement for many aquatic applications of eDNA sampling, particularly 
for invasive species monitoring, is to estimate source population locations because 
the location where eDNA is detected is not necessarily where it was produced due 
to hydrological transport (Carraro et al. 2018; Burian et al. 2021; Jo and Yamanaka 
2022). In stream or river networks, eDNA flows downstream from the source(s) and 
is detectable until the eDNA concentration attenuates below a detectable level due 
to physical degradation (Lance et al. 2017) and/or removal from the water column 
(Shogren et  al. 2017). Therefore, an understanding of eDNA transport dynamics 
is required to either localize source populations (e.g., Carraro et al. 2018) or more 
broadly, estimate the plausible range of upstream distances a source population can 
be located from a detection to direct next steps, like more intensive sampling for 
confirmation (Sepulveda et al. 2023).

Environmental DNA fate and transport dynamics are the product of (1) eco-
logical and biological factors determining how much eDNA is produced across 
source populations (e.g., abundance, biomass, eDNA production rate), (2) hydro-
logical factors (e.g., discharge, particle settling and resuspension, river network 
connectivity), and (3) their interaction (e.g., eDNA degradation, removal from 
water column to substrate) (Carraro et  al. 2018; Curtis et  al. 2021; Troth et  al. 
2021; Shogren et  al. 2017). A recent modeling framework that includes these 
general features is the eDNA Integrating Transport and Hydrology (eDITH) 
model (Carraro et al. 2018, 2021), which has been used to predict the locations of 
source populations and their eDNA production rates (Carraro et al. 2021) that can 
correlate with abundance (Jo and Yamanaka 2022). The eDITH model is neces-
sarily simplistic, given the number of factors that need to be accounted for with 
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the typical level of eDNA sampling and the need to apply the model to large river 
networks which can be computationally intensive. Further, the eDITH model 
likelihood can be multimodal (described as “equifinality” by Carraro et al. 2021), 
with the eDNA removal rate parameter(s), the product of both physical decay and 
removal, being poorly estimated (Carraro et al. 2021). Therefore, prior informa-
tion, particularly about the eDNA removal rate parameter(s), can improve param-
eter estimation and thus ecological inference (Carraro et al. 2021, 2023).

Release experiments (e.g., Jane et  al. 2015; Laporte et  al. 2020, ) have been 
important for improving understanding of eDNA transport and removal dynam-
ics, and they offer a means of providing parameter estimates that can be used as 
prior information in future modeling when the source locations are not known in 
advance (e.g., Carraro et al. 2018). Further, release experiments allow us to test 
model assumptions (Bylemans et al. 2018; Yates et al. 2021), better evaluate the 
level of realism necessary for reliable inference, and assess the data demands for 
a given level of realism. For example, eDITH model applications to date have 
assumed that the eDNA removal rate is constant with respect to time, which 
could lead to biased estimates of source locations or detection distance from a 
source if violated. In fact, the eDNA removal rate has been shown to decline with 
time in some experiments (Bylemans et al. 2018; Yao et al. 2022; Snyder et al. 
2023). Bylemans et al. (2018) hypothesized this decline may be due to variable 
removal rates across eDNA fragments, such as between fragments in cells and 
free-floating DNA, and Snyder et al. (2023) provided experimental evidence that 
removal rate varies by particle size. To our knowledge, these hypotheses have 
not been compared to empirical data within the eDITH framework, which is pos-
sible in release experiments if the relevant hydrological variables are measured 
accurately.

Another key requirement of many aquatic applications of eDNA sampling is 
the accurate and precise quantification of eDNA concentration. While many eco-
logical questions can be addressed with eDNA detection data alone (e.g., Hunter 
et al. 2015), relating eDNA measurements to abundance or modeling eDNA produc-
tion, transport, and removal as a function of hydrology require quantitative eDNA 
measurements. These measurements can be obtained by quantitative or digital PCR 
(Yates et  al. 2019), where measurements are made across multiple PCR technical 
replicates (hereafter ‘replicates’) of the same sample. These replicate-level measure-
ments are typically then summarized and treated as data, usually using the mean 
concentration across replicates as the sample concentration or averaging replicates 
across samples to produce site concentrations (e.g., Yates et al. 2021). However, rep-
licate measurements vary due to multiple factors including variable concentrations 
across samples (Chambert et al. 2018; Shelton et al. 2019), variability in the allo-
cation of eDNA copies to replicates (Rossmanith and Wagner 2011; Dorazio and 
Hunter 2015; Tellinghuisen 2020), and measurement error in replicate copy number/
concentration (Shelton et al. 2019; Espe et al. 2022). The common approach of aver-
aging replicate concentrations does not partition multiple sources of variance and 
pools the measurement error with the ecological variance, potentially eroding eco-
logical inference if the measurement error is non-negligible in magnitude relative to 
ecological variation.
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Low concentration samples present several unique challenges for accurate eDNA 
quantification. First, eDNA copy number or concentration estimates are typically 
modeled assuming approximate normality (usually on the log scale, see Carraro 
et al. 2018; Espe et al. 2022), which is an accurate approximation at high concen-
trations where copy numbers in replicates are large, but less so as concentrations 
decline and there are few copies per replicate (Ellison et  al. 2006; Dorazio and 
Hunter 2015). Further, copy number measurements are often censored from below 
by a fixed number of quantitative (q)PCR cycles or a limit of quantification or limit 
of blank, which requires lower truncation of the observation model distribution 
(Espe et al. 2022). Low concentration samples also present challenges for interpret-
ing nondetections—as sample concentrations decline, both true negative (Poisson 
sampling zeros) and false negative (failed detections) replicates become more likely, 
which cannot be deterministically separated given the observed data (Ellison et al. 
2006). In this situation, excluding zeros from sample means will introduce positive 
bias, while including them may also introduce bias, with the direction depending 
on the relative proportion of true and false negatives. Finally, sample concentra-
tion can be underestimated due to interference by eDNA inhibitory compounds in 
water samples (i.e., inhibition), which can be difficult to reliably detect (Kontanis 
and Reed 2006; Lance and Guan 2020), and these inhibitors are more likely to affect 
lower concentration samples (McKee et al. 2015; Hunter et al. 2019). Such under-
estimation can bias ecological inference–for example, the eDNA removal rate in a 
release experiment would be overestimated or the source location prediction from 
an eDITH model would be too far away. These challenges for quantifying low con-
centration samples are of particular concern when the goal is the early detection 
of invasive species, which are easiest to eradicate when population sizes are small, 
yet those populations produce less eDNA, yielding more samples where quantitative 
measurements are unreliable.

Hierarchical models are useful for partitioning multiple sources of variation and 
reducing bias by allowing the source(s) of bias to be modeled more mechanisti-
cally (Royle and Dorazio 2008). These models are increasingly being used in eDNA 
analyses—for example, multiscale occupancy models (Nichols et al. 2008; Dorazio 
and Erickson 2018; Stratton et al. 2020) have been used to propagate uncertainty in 
replicate-level occupancy states to site occupancy estimates and covariate relation-
ships, and occupancy models have been extended to account for false positives (e.g., 
Smith and Goldberg 2020; Guillera-Arroita et al. 2017). Hierarchical models have 
been used for quantitative eDNA data to partition measurement and multiple levels 
of environmental variation and relate both detection and quantitative measurements 
to site concentration (Shelton et al. 2019; Espe et al. 2022). However, to deal with 
the challenges of low concentration eDNA measurement, a hierarchical model rep-
resenting the replicate copy numbers as latent discrete random variables may pro-
vide improved inference. In such a model, the copy numbers can be assigned a more 
appropriate count distribution, and the uncertainty in whether observed zeros are 
true or false negatives can be propagated to the ecological parameters of interest. 
Further, representing the copy numbers directly in the model may improve our abil-
ity to assess lack of fit at the replicate level and investigate hypotheses about inhibi-
tors affecting the replicate-level measurements.
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To better understand eDNA transport/removal, environmental variation, 
measurement error, and our ability to jointly estimate the parameters of these 
processes, we conducted an eDNA release experiment and developed a hier-
archical model to apply to our experimental data that accommodates all three 
sources of nondetections described above (no copies allocated to a replicate, 
copies allocated but not detected, and copies allocated and detected, but meas-
urement censored and treated as a nondetection). Of particular concern was how 
well the eDITH model parameters are estimated and whether the eDNA removal 
rate is constant or declining through time. Because we observed that our original 
model did not adequately fit our experimental data, particularly for lower con-
centration samples, we hypothesized that the source of poor fit could be eDNA 
inhibitory compounds and expanded the model to accommodate the impact of 
eDNA inhibitors on detection and copy number quantification. We used this 
model to illustrate how inhibitors can bias inference of multiple parameters and 
demonstrate how they can, in principle, be accommodated through hierarchical 
modeling for more reliable ecological inference.

2 � Field methods

2.1 � DNA release

We conducted this experiment in the upper section of a 1st-order tributary of 
the Gallatin River located on the Flying D Ranch in southwest Montana (USA), 
2023 August 21–24. The upper section of this stream is approximately 1 m wide, 
3–12 cm deep, a gradient of 50 m/km, had a mean discharge 0.02 (m3/s) dur-
ing our study and flows into a small reservoir containing a conservation brood 
stock of Arctic grayling (Thymallus arcticus), the target species for this study. 
An artificial barrier restricts upstream movement of Arctic grayling from the 
reservoir into the study reach—this species is absent in the watershed upstream 
of the barrier. We introduced water collected from the reservoir’s offshore zone 
to the injection point (0 m) at the top of the 1000 m study reach; a plunge pool 
occurred immediately downstream of the injection point and putatively helped 
to mix introduced DNA. This experimental water was transported from the res-
ervoir in ∼ 200 L carboys and then transferred into bleached and rinsed coolers 
connected in series and placed in a shaded area adjacent to the injection point. 
The water was refreshed every 12 h. Beginning at time 0 h, water was dripped 
into the stream at a rate of 220 mL/min for 49 h using an electric-operated 
pump connected to the cooler series and 2.5-cm PVC that spanned the width 
of the stream. Eight sprinkler emitters were attached to the PVC at 0.1 m inter-
vals so that experimental water was dripped across the stream’s width to facili-
tate mixing. At time 32 h, eight Arctic grayling that were recreationally-angled 
and legally harvested were added to the cooler series. Experimental water was 
dripped into the stream until eDNA sampling concluded.
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2.2 � eDNA sampling

At time 48 h, we used distinct 19-L buckets to collect eDNA samples at −0.5 , 0.5, 
2.5, 5, 10, 20, 40, 80, 125, 200, 300, 400, 500, 1000 m from the injection point. 
Sampling was completed at all sites within 5 min. Buckets were bleached (50% 
commercial bleach, Goldberg et  al. 2016), rinsed with stream water upstream 
of the injection point, and then repeatedly rinsed with stream water at the sam-
pling point prior to collecting a sample. To collect samples, we filled the bucket 
with stream water from the cross-section midpoint, swirled the bucket, and then 
poured this water into each of six, 1-L sterile whirlpak bags. Our intention with 
the buckets was to collect uniform samples at and across sampling points in as 
short a time-increment as possible to minimize any temporal variability associ-
ated with inconsistent eDNA production and removal rates. Bags were stored at 
ambient temperatures in the shade and filtered on site through 47-mm diameter, 
1.2 μ m mixed cellulose ester filters (Millipore) within 90 min of collection. Fil-
ters were placed immediately into 200 μ L lysis buffer, which contained 20 μ L of 
proteinase K and 180 μ L of Qiagen Buffer AE, and returned to USGS Northern 
Rocky Mountain Science Center (NOROCK) for extraction and analysis.

We collected two field negative controls immediately before time 48 h, which 
consisted of 250-mL of deionized water poured into sterilized whirlpak bags. We 
collected field positive controls by sampling 1 L of water directly from the reser-
voir at time −24 and 0 h, and by sampling 1 L of water from the coolers at time 0, 
24, and 48 h. Controls were handled similarly to experimental samples. Negative 
controls were filtered immediately prior to experimental samples, whereas posi-
tive controls were filtered at USGS NOROCK.

2.3 � Hydrological covariates

Discharge was measured at all eDNA sample collection sites with the following 
exceptions due to stream habitat complexity (e.g., undercut banks, large wood 
and cobbles) that prevented accurate measurement: we used discharge measured 
at 5 m for the first three sites at 0.5, 2.5 and 5 m; we used discharge measured 
at 15 m for sites at 10 and 20 m; and we used discharge measured at 35 m for 
the site at 40 m. Discharge measurements were estimated using the velocity–area 
method (Herschy 1993), which involves dividing each site cross-section into mul-
tiple subsections (approximately every 1 cm) and measuring the width, depth, 
and flow velocity of each subsection with a hand-held current meter. Discharge 
values for each subsection were summed to arrive at the cross-section discharge. 
Discharge was sampled at time 24 h and time 49 h. We also deployed barometric 
pressure transducers (Onset HOBO water level logger) set to 1-h intervals in the 
air and water at 125 m to evaluate whether the water surface elevation (as a proxy 
for discharge) was stable throughout our experiment. The transducer in the water 
also collected water temperature at hourly increments. We deployed additional 
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water temperature loggers (Onset HOBO pendant) at −0.5 and 1000 m to describe 
water temperature at hourly increments.

3 � Lab methods

3.1 � Inhibition assessment

Here, we describe the methods to assess inhibition—all other lab methods are in 
“Appendix”. Inhibition was measured through the use of an exogenous internal posi-
tive control (IPC) in every qPCR reaction, including controls (TaqManTM Exogenous 
Internal Positive Control Reagents, cat. #4308321). We added 2 μ L of VIC-labeled 
10x Exo IPC Mix and 0.4 μ L 50x Exo IPC DNA per qPCR reaction. Standard dilu-
tions of IPC DNA were not used, so inhibition was assess using quantification cycle 
(Cq) values determined from the methods described and referenced above. We used 
ΔCq to describe inhibition of each qPCR reaction on a continuous scale:

where ΔCqkp is the difference in IPC Cqkp for qPCR reaction k on plate p and the 
mean Cq of a set of c uninhibited control samples on plate p ( C̄qcp ). Said another 
way, ΔCqkp is the difference between a sample IPC Cq and the mean IPC Cq of a set 
of uninhibited samples on the same 96-well plate. Uninhibited control samples for 
each plate included no-template controls (NTCs) and synthetic standards with copy 
numbers of the target DNA strand < 1000. Positive values of ΔCqkp reflect a delay in 
Cq, an indication of possible inhibiting effects.

4 � Modeling methods

4.1 � Data description

Our eDNA detection and quantification data are structured by site, sample, and PCR 
replicate. Sites are numbered i = 1,… , I = 13 , each with a distance from the release 
site, di , in sequential order starting at 0.5 m. At each site, samples are numbered 
j = 1,… , J = 6 , and for each sample, replicates are numbered k = 1… , K = 5 . We 
define yobs

i,j,k
 to be the measured copy number for site i, sample j, and replicate k, with 

copy number measurements converted from the observed Cq values. Elements of 
yobs corresponding to failed detections are set to 0 as are any copy number observa-
tions less than a lower bound for quantification, �q . This quantification lower bound 
can be set to the copy number corresponding to the maximum number of PCR 
cycles used to account for data censoring due to a limited cycle number (Espe et al. 
2022), or it can be set to exclude the lowest copy number measurements if (1) they 
do not meet model assumptions (e.g., biased measurement at low concentrations, 
discussed below), or (2) they are below a limit of blank and may be false positives 
(Lesperance et al. 2021).

(1)ΔCqkp = Cqkp − C̄qcp,
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Next, we define ydet
i,j,k

 to be the detection data taking value 1 if the copy number 
measurement is greater than �d and 0 otherwise, where �d is a lower bound of detec-
tion that is less than or equal to the lower bound of quantification. For our analyses, 
we set �q to the copy number corresponding to 50 cycles and we set �d = 0 because 
we expect every sample to contain target eDNA. If false positives are a concern, 
both �d and �q can be set higher, perhaps at the limit of blank (Lesperance et  al. 
2021). Note, these definitions of detection and quantification lower bounds differ 
from standard definitions of “limit of detection” and “limit of quantification” (e.g., 
Klymus et al. 2020). Finally, for the hydrological data, we define Qi to be the dis-
charge rate at site i and vi to be the average stream velocity between the release loca-
tion and site i. Due to concerns about the measurement precision of stream velocity 
at each site relative to typical variation over a 1 km stream segment, we set the aver-
age stream velocity between the release location and each site to the mean of meas-
ured velocities across sites: vi = v̄.

4.2 � Ecological process model

4.2.1 � eDNA production, transport, and removal process

We assume site eDNA concentrations are the product of sub-processes for eDNA 
production, transport, and removal for which we adapt the eDNA Integrating Trans-
port and Hydrology model (eDITH; Carraro et al. 2018), which is a generalization 
of mass balance models for single eDNA sources (e.g., Sansom and Sassoubre 2017; 
Altermatt et al. 2023) to multiple sources that accounts for variable hydrology across 
sites. The eDITH model is:

where Csite
i

 is the concentration at site i (N/m3 ), where N is the number of eDNA 
copies, Qi is the water discharge rate at site i (m3/s), �i is the set of sites upstream of 
site i, Aj is the habitat area of site j (m2 ), p0j

 is the eDNA production rate of site j (N/
m2 s), di,j is the distance between site i and j (m), vi,j is the mean velocity between 
site i and j (m/s), and � is the inverse eDNA removal rate (s). In our experiment, 
eDNA is added at a point location of zero area, so we remove area and define p0 to 
be the eDNA production rate without respect to area with units N/s. Further, eDNA 
is only “produced” at the release location, removing the need to sum the eDNA con-
tribution of multiple upstream sites. These modifications simplify the eDITH model 
to:

where p0 is the eDNA production rate at the release location, di is the distance 
between site i and the release location, and vi is the mean velocity between site i and 
the release location, which we assume to be constant across sites.

(2)Csite
i

=
1

Qi

∑
j∈�i

Ajp0j
exp

(
−di,j

vi,j�

)
,

(3)Csite
i

=
p0

Qi

exp

(
−di

vi�

)
,

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325



    
    

 R
EVISED PROOF

Journal : SmallExtended 10651 Article No : 632 Pages : 36 MS Code : 632 Dispatch : 13-11-2024

Environmental and Ecological Statistics	

We consider two versions of the eDITH model above with respect to how 
eDNA is removed from the water column as a function of time. Note that the 
expected travel time from the release location to site i is ti =

di

vi

 , and the expo-
nential term in the eDITH model is an exponential survival function in continu-
ous time:

The removal rate is F(t) = 1 − S(t) , and we will use this term for better consist-
ency with the eDNA literature. Under an exponential model, DNA is removed at the 
same rate through time. A Weibull model (David and Mitchel 2012; Bylemans et al. 
2018) considers that the eDNA removal rate can increase or decline through time, 
but includes an extra parameter, which we found led the eDITH model parameters 
to be too weakly identified for parameter estimation with our data. A power law 
relationship (Shogren et al. 2017; Levi et al. 2019) allows the eDNA removal rate to 
decline through time without an extra parameter; however, (1) if we use a power law 
relationship as a survival function, S(t) = t−� , survival goes to infinity when t is less 
than 1 and (2) without the scale parameter � , the time units do not cancel. Therefore, 
we define Ti = 1 + ti , where T is a non-dimensional time factor, and the survival 
function as a function of T is:

This survival function is not derived from a distribution for failure times, such as 
the exponential or Weibull; however, it may still be empirically adequate to describe 
faster than exponential decay in our experiment.

The resulting eDITH model with power law eDNA removal in continuous 
time is then:

for sites 2 ,… ,13. For both eDITH removal models, we add a thinning parameter at 
the first site to account for the “plume effect” seen in previous studies (Wood et al. 
2020, 2021; Laporte et al. 2020, see Discussion), which describes the phenomenon 
of delayed mixing with distance from the eDNA source. For example, in the power 
law version:

where 0 < 𝜃site < 1 . As a consequence, copy number measurements from site 1 do 
not contribute to the estimation of the eDITH model parameters beyond ensuring 
that the concentration at site 2 is greater than or equal to that at site 1.

(4)S(t) = exp
(
−t

�

)
.

(5)S(T) = T−� .

(6)Csite
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)−�
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4.2.2 � Sampling process

The sampling process describes the variation in sample concentrations collected at a 
site as a function of the site concentration. This distribution is typically right-skewed 
due to eDNA clumping in the water column and stochastic collection of more rare, 
larger “aggregate” particles (Furlan et al. 2016; Yates et al. 2023); therefore, we use a 
log-normal distribution (Carraro et al. 2018; Espe et al. 2022) to describe this variation. 
Conditional on the eDNA concentration at site i, we assume that the concentration in 
each collected sample, Csamp

i,j
 , varies following:

where �samp is the sampling process standard deviation on the log scale, which could 
be a function of site covariates such as the distance from the release location.

4.2.3 � Replication process

The replication process describes the variability in the number of copies allocated to 
each replicate given the sample concentration. We model the eDNA copy number in 
each replicate, Ni,j,k , as a count random variable with an expected number of copies 
being a function of the sample concentration (Dorazio and Hunter 2015; Furlan et al. 
2016). More specifically,

where �rep

i,j
 is the expected number of copies in a replicate from site i and sample j 

and Vrep

i,j
 is the sample volume in cubic meters associated with 1 replicate from site i 

and sample j. If this volume varies across replicates of the same sample, a replicate 
dimension can be added to � and Vrep . Next, we assume that the eDNA copies are 
homogeneously distributed throughout the eDNA extract and deposited into each 
replicate following a Poisson distribution, which has theoretical support for both 
digital PCR (dPCR) and qPCR (Dube et  al. 2008; Rossmanith and Wagner 2011; 
Tellinghuisen 2020; Lesperance et al. 2021):

4.3 � Observation model

The observation model describes both the detection and quantification processes. For 
the detection process, we assume replicate-level detection probability, p

y

i,j,k
 , is a func-

tion of the number of copies in a replicate:

(8)log
(

C
samp

i,j

)
∼ Normal

(
log

(
Csite

i

)
, �samp

)
,

(9)�
rep

i,j
= C

samp

i,j
V

rep

i,j
,

(10)Ni,j,k ∼ Poisson
(
�

rep

i,j

)
.

(11)logit
(

p
y

i,j,k

)
= �0 + �1(Ni,j,k − 1).
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By subtracting 1 from the number of copies in each replicate, �0 corresponds to the 
detection probability of 1 copy, and we constrain 𝛾1 > 0 with a truncated prior (see 
Supplementary Materials B). Then, we assume

where N1
i,j,k

= INi,j,k>0 is an indicator variable that zeroes out the detection probability 
when 0 copies are allocated to a replicate on the logit scale.

Finally, the quantification process, conditioned on detection and the number of 
copies in a replicate, is

where yi,j,k is the measured replicate copy number and �rep is the replicate-level copy 
number measurement error on the log scale, which could be a function of site, sam-
ple, or replicate covariates. Because (1) we condition the quantification process on 
positive detections and (2) copy number measurements may be censored from below 
by �q (Espe et al. 2022), the observed replicate-level quantitative data, yobs

i,j,k
 , are:

This model is depicted in Fig. 1. An important assumption in this quantification 
process model is that the log copy number measurements are unbiased, i.e., 
E[log(yi,j,k)] = log(Ni,j,k) , which can be violated, for example, by a concentration 
plateau effect (Hunter et al. 2017) or by DNA inhibitors (McKee et al. 2015; Hunter 
et al. 2019; Sepulveda et al. 2020). We consider the latter in the next section. A final 
note we will make here is that by conditioning measurement on detection when 
detection is a function of concentration accounts for the fact that the expected value 
of measurements for the detected replicates of low concentration samples is larger 
than log(�

rep

i,j
) because the replicates that are allocated the lowest positive copy num-

bers are less likely to be detected and thus measureable, and replicates that are allo-
cated 0 copies never produce a quantitative measurement.

4.4 � Extended process model: copy inhibition

Here, we consider that the PCR reaction in each replicate may be partially or 
completely inhibited, which can decrease both the detection probability and the 
number of copies measured given detection. Compounds found in the environ-
ment can inhibit PCR reactions via multiple mechanisms, including binding to the 
target DNA and binding to or otherwise interfering with reaction products (Opel 
et  al. 2010; McKee et  al. 2015). Inhibition is typically identified by comparing 

(12)
[
ydet

i,j,k
|Ni,j,k

]
∼ Bernoulli

(
p

y

i,j,k
N1

i,j,k

)
,

(13)
[
log(yi,j,k)|Ni,j,k, ydet

i,j,k
= 1

]
∼ Normal

(
log(Ni,j,k), �

rep
)
,

�
yobs

i,j,k
�ydet

i,j,k
, yi,j,k

�
=

⎧
⎪⎨⎪⎩

0, if ydet
i,j,k

= 0,

0, if ydet
i,j,k
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i,j,k

= 1 and yi,j,k > 𝜂q.
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the Cq values of IPCs to uninhibited control samples (Volkmann et al. 2007; Jane 
et  al. 2015, see Lab Methods: Inhibition Assessment) and using a determinis-
tic decision rule to exclude samples likely to be inhibited (e.g., samples with a 
ΔCq ≥ 3 Goldberg et  al. 2016), though others have treated ΔCq as continuous 
measures of inhibition (Volkmann et  al. 2007; Lance and Guan 2020). We take 
the latter approach, modeling the probability of inhibition as a function of repli-
cate copy number, replicate ΔCq , and a sample-level random effect.

For each replicate, the probability of inhibition is pw
i,j,k

 , where

Fig. 1   Model diagram for the exponential removal model without an inhibitor processes. The eDITH 
process describes how concentration is distributed across sites, the sampling process describes how con-
centration is distributed across samples at a site, the replication process determines how many copies are 
allocated to each replicate for each sample, the detection process describes how copies in each replicate 
are detected, and the quantification process describes how detected copies are measured
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shifti,j,k is the standardized ΔCq covariate, and �i,j ∼ Normal(0, 1) (non-centered 
sample-level random effects; Papaspiliopoulos et  al. 2007). Note, we expect the 
𝛽1 < 0 and constrain it to be less than zero with a truncated prior (see Supplemen-
tary Materials B). The sample random effects account for sample-level heterogeneity 
in replication inhibition probability, due, at least in part, to sample-level variability 
in inhibitor concentration. Next, we assume replicate inhibition states are Bernoulli 
random variables

with wi,j,k taking value 1 when inhibited and 0 otherwise. If a replicate is inhibited, 
we assume the copies available to be detected and measured, Nthin

i,j,k
 , result from a 

thinning process of the true copy number:

where �thin
i,j,k

 is the thinning rate, which could be a function of covariates or random 
effects. For simplicity, we assume logit(�thin

i,j,k
) = �0 . Then, to determine how many 

copies are available for detection and measurement as a function of the replicate 
inhibition states, we specify

which evaluates to Nthin
i,j,k

 if a replicate is inhibited and Ni,j,k otherwise. Finally, we 
replace Ni,j,k with Navail

i,j,k
 in the observation model so that detection and measurement 

are both conditioned on the inhibition states:

Then, the detection model is the same as Eq. (12), except we redefine N1
i,j,k

= INavail
i,j,k

>0 , 
a function of the available copy number instead of the true copy number.

The number of copies available to be detected can be interpreted as the number 
of copies that inhibitors did not bind to, the number of copies measureable given the 
magnitude of binding of inhibitors to polymerase in a replicate, or a combination 
of both factors. More generally, the main feature of the inhibitor model is a large 
reduction in the detection probability and measured copy number for inhibited sam-
ples, which happens regardless of the precise mechanism (Opel et al. 2010; McKee 
et al. 2015). This extended model is depicted in Supplementary Fig. S1. With this 
model structure, if a replicate is inhibited, its detection probability and expected log 
copy number measurement given detection both decrease, with detection probability 

(14)logit
(

pw
i,j,k

)
= �0 + �1(Ni,j,k − 1) + �2shifti,j,k + �w�i,j.
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)
,

(16)
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)
,
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(18)logit(p
y
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− 1),

(19)
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decreasing to 0 if no copies are available to be detected. Note that the inhibition 
states, wi,j,k , are not directly observed—we can only observe the effects of inhibi-
tion on the copy number detections and measurements. However; the specification 
of our inhibitor model as part of a larger hierarchical model (Royle and Dorazio 
2008) allows the inhibition states to be estimated jointly along with the other model 
variables and latent states.

4.5 � Parameter estimation

We estimated our model parameters using Markov chain Monte Carlo (MCMC) 
in the Nimble software (Version 1.0.1; de Valpine et al. 2017) in program R (Ver-
sion 4.0.5; R Core Team 2021). We used Nimble defaults for all MCMC sampler 
assignments, with some exceptions, specifically, (1) for the inhibitor models, we 
added user-defined samplers that were required to adequately sample the posterior 
(described in Supplementary Materials B), (2) due to strong posterior correlation, 
we used a separate block Metropolis–Hastings updates (Ponisio et al. 2020) for pro-
cess parameters p0 , �site , � or � , detection parameters �0 and �1 , and inhibitor param-
eters �w

0
 and �w

1
 . Our priors can be found in Supplementary Materials B.

4.6 � Data analysis

4.6.1 � Model comparisons

To investigate the evidence for and effects of both a non-constant eDNA removal 
rate with respect to time and eDNA inhibitors, we fit four models:

•	 Model I–PL—accounts for inhibitors, power law removal,
•	 Model I–E—accounts for inhibitors, exponential removal,
•	 Model N–PL—ignores inhibitors (null), power law removal,
•	 Model N–E—ignores inhibitors (null), exponential removal.

While the following are not completely conclusive on their own, we suggest that evi-
dence supporting the inhibitor models would be (1) a strong lack of fit when ignor-
ing inhibitors that is reduced when they are modeled (e.g., Model N–PL vs. Model 
I–PL), (2) a clear negative relationship between the probability of replicate-level 
undermeasurement events (hypothesized to be caused by inhibition) and the number 
of copies in a replicate, and (3) a positive relationship between the probability of 
replicate-level undermeasurement events and the replicate ΔCq.

If the inhibitor models are a good approximation of reality, we expected (by logi-
cal implications of the model structure) that when ignoring inhibitors, we would (1) 
underestimate site concentrations, with larger underestimation as site concentration 
decreases, (2) overestimate the eDNA removal rate due to under-measuring more at 
lower concentration sites farther from the source, (3) overestimate both the sampling 
and measurement variability which must accommodate the effects of inhibition, 
and (4) underestimate the effect of replicate copy number on detection probability 
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because the copy number in each replicate will be underestimated, on average. To 
compare the inhibitor models to the null models, we used posterior predictive checks 
(Gelman et al. 1996; Conn et al. 2018) and the conditional Watanabe–Akaike Infor-
mation Criterion (WAIC; Watanabe and Opper 2010; Gelman et al. 2014). For the 
posterior predictive check, we used the observation model deviance as the discrep-
ancy function (King et al. 2009; Conn et al. 2018). For the null models, the observa-
tion model deviance is

The observation model deviance for the inhibitor model is the same as for the null 
models, except we replace N with Navail . For each data point, we computed the 
Bayesian P-value, the probability each observed data point’s discrepancy is more 
extreme than that of data simulated from the posterior. We considered observa-
tions with Bayesian P-values less than 0.05 to be poorly explained by the model and 
assumed models with more extreme data were less supported.

To compare inhibitor models via WAIC, we used the conditional WAIC (cWAIC) 
that considers the observation model likelihood conditioned on the number of cop-
ies allocated to each replicate, [yobs|ydet, �rep, N][ydet|�0, �1, N] . We also used WAIC 
to compare the removal models; however, cWAIC was not a useful criterion for the 
process model. In theory, the cWAIC may allow us to compare the exponential and 
power law process models for these 78 samples (not population-level inference). 
However, the sample concentrations estimated by these two models were nearly 
identical (see Results) because the sampling variation was large relative to variation 
in the observation model, yielding very little shrinkage of sample means toward the 
site means (for a discussion of shrinkage see Gelman et al. 2013), and thus nearly 
equivalent conditional likelihoods and WAICs.

While the likelihoods conditioned on the latent variables were nearly identical, 
the process model likelihood for the distribution of sample means around site means 
on the log scale, e.g., [log(Csamp)|p0, �, �site] in the exponential removal model, were 
not. In this case, marginal WAIC (mWAIC) that also considers the process model 
likelihood is generally more appropriate for process model selection, and further, 
it considers the ability of models to predict measurements for new clusters (Mer-
kle et al. 2019; Ariyo et al. 2020, 2022), which here are samples, instead of the 78 
samples we did measure (population-level inference). For the exponential model, the 
marginal likelihood is [yobs|ydet, �rep, p0, �, �site][ydet|�0, �1, p0, �, �site] . With continu-
ous random effects as we have for the sample concentrations, the marginal likeli-
hood needs to be approximated, for example, with importance sampling, which can 
be computationally costly (Tran et al. 2021). Further, in our model, to approximate 
this marginal likelihood, we must first integrate out Nrep , which requires summing 
over large ranges of integers for every replicate.

For the null models, we were unable to both integrate out Nrep and approximate 
the marginal likelihood in a reasonable amount of time, and for the inhibitor mod-
els, we were unable to integrate out Nrep in a reasonable amount of time. There-
fore, we instead computed sample-level WAIC using the process model likelihood 
and the posterior modes of the sample log concentrations from the full exponential 

(20)T(yobs, ydet, N, �rep, �0, �1) = −2 log
(
[yobs|ydet, �rep, N][ydet|�0, �1, N]

)
.
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release models as data, [ ̂log(Csamp)|p0, 𝜏] . Note, we removed �site from the marginal 
likelihood here since we used it to compute the sample log concentrations at the 
first site to reflect what they were before thinning. We chose to use the sample log 
concentration point estimates from the exponential model because (1) to compare 
WAIC, the observed data must be the same, and (2) choosing the exponential esti-
mates a priori favors the exponential model to the degree the sample concentrations 
are shrunk toward the exponential process model site means. In sum, we pragmati-
cally compared the release models evaluated at our best estimates of the sample con-
centrations. This approach ignores uncertainty in the sample concentrations, but is 
arguably more reliable than the common practice of averaging technical replicates 
to obtain sample concentrations to then use as data and compare models due to the 
challenges of computing sample means outlined in the Introduction.

4.6.2 � Independent eDNA production rate estimate

While the eDNA production rate, p0 , in our experiment was unknown, we used three 
samples collected from the cooler from which water was released within 15 min 
of completing the field sample collection and an estimate of the release rate from 
the cooler (220 mL/min) to produce independent estimates of p0 . Because we could 
not estimate all the sampling, replication, and observation process parameters with 
only three samples, and the measured replicate copy numbers from cooler samples 
were large (5.8–8.4 million), we used a simplified estimation approach. We first esti-
mated the sample log concentrations by averaging the replicate concentrations on 
the log scale and then used these averages as our three data points. Then, because 
three data points were not sufficient to estimate the sampling standard deviation with 
acceptable precision, we did a sensitivity analysis where we estimated p0 from the 
cooler samples assuming �samp was 0.25, 0.5, 1.0, or 1.5, where 0.25 and 0.5 were 
lower than what we estimated from the inhibitor release models and 1.5 was higher. 
We then compared the visual overlap in the posterior distributions of p0 from the 
four release models to these hypothetical sampling standard deviations for the cooler 
models.

4.6.3 � MCMC details

For each of the 4 release models, we ran 3 MCMC chains for 300,000 iterations 
each, with model parameters and latent variables thinned by 25 and 250 iterations, 
respectively. We discarded 25,000 pre-thinned iterations and assessed convergence 
using the Gelman–Rubin Statistic (Brooks and Gelman 1998) ensuring the 95% CI 
upper bound was less than 1.1 for all parameters. Posterior modes were used as point 
estimates and 95% highest posterior density (HPD) intervals were used as interval 
estimates. Because the posteriors for N , Nthin , Navail , and Csample were often mul-
timodal in the inhibitor models, we used the HDinterval R package (Meredith and 
Kruschke 2020) to produce discontinuous HPD intervals. For each of the cooler 
models (each level of �samp ), we ran 1 chain for 25,000 iterations, discarding the first 
5000 iterations.
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4.7 � Simulation study

We conducted a simulation study to characterize how well parameters of each model 
were estimated in terms of percent relative bias (absolute bias divided by the true 
parameter value and then multiplied by 100), 95% coverage (proportion of data sets 
for which the 95% HPD covers the true parameter value), and the coefficient of var-
iation (CV; posterior standard deviation divided by posterior mode multiplied by 
100) when using data similar to ours in terms of the data dimensions, hydrology, 
and parameter values. We simulated 100 data sets from each of four models using 
the parameter estimates from the field data, with the same number of sites, site dis-
tances, replicate number, and hydrological parameters. The simulation scenarios dif-
fered from the field data models in two ways—we excluded the thinning process at 
the first site due to the “plume effect” to assess how well the eDNA production rate, 
p0 , can be estimated when ignoring this nuisance parameter, and we excluded the 
ΔCq covariate as it may not always be available.

For each simulated data set from the null and inhibitor models, we ran 3 MCMC 
chains for 150,000 and 300,000 iterations, respectively, and thinned posteriors by 25 
to reduce file sizes. For null and inhibitor models, we discarded a minimum burn in 
of 5000 and 35,000 pre-thinned iterations, respectively. After discarding this burn 
in, we computed the Gelman–Rubin statistic ( ̂R ; Gelman and Rubin 1992) for each 
parameter, ensuring that the 95% confidence interval upper bound of the statistic 
was below 1.1. For posteriors with R̂ 95% confidence intervals greater than 1.1 for 
any parameter, we discarded more burn in after visual inspection to meet this condi-
tion. For point estimates, we used the posterior mode, and for interval estimates, we 
used the 95% HPD interval. For each data set, we computed the CV for all param-
eters by dividing the posterior standard deviation by the absolute value of the pos-
terior mode and multiplying by 100. We report the CV averaged across data sets for 
each model. One exception was for �w

0
 , which had point estimates very close to zero, 

leading to large CVs which were not informative of parameter precision (Kvålseth 
2017). For this parameter, we computed the CV as the averaged standard deviation 
divided by the averaged posterior mode multiplied by 100.

5 � Results

5.1 � Observed data and inhibition assessment

We observed no amplification in negative controls or in samples collected upstream 
of the introduction point and positive controls amplified as expected. The replicate-
level quantitative data ranged from 2.22 to 5.91 log10 copies/L and 0.22–3.91 log10 
copies per reaction (Supplementary Fig. S2a). We observed 24 replicates (out of 
390) that failed to detect eDNA, with 1, 5, 7, 1, 2 and 8 failed detections at distances 
of 0.5, 40, 300, 400, 500, and 1000 m, respectively. Three samples failed to detect 
eDNA across all five replicates, one sample each at distances of 40, 300, and 1000 
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m. Our inhibition assessment did not indicate inhibition for any replicates using the 
decision rule of ΔCq ≥ 3 . Shifts in Cq ranged from −0.13 to 1.60 with a mean of 
0.11 cycles. The distribution of ΔCq was right skewed, with most values clustered 
slightly above zero (Supplementary Fig. S2b).

5.2 � Analysis of field data

The four models we considered produced substantially different parameter estimates, 
leading to different inferences about the ecological and observational processes that 
produced our data (Table 1). The inhibitor models estimated that the sampling pro-
cess standard deviation, �samp was smaller and the quantification process standard 
deviation, �rep was larger, compared to the null models. The inhibitor models further 
estimated that the removal rate (governed by � or � ) was lower compared to the null 
models, and that site concentrations were higher, particularly at the sites farthest 
from the source (Fig. 2).

The power law removal models estimated the eDNA production rate at the source 
to be much larger than the exponential removal models (Fig. 3) and correspondingly, 
estimated the percent of total concentration that is measurable at the first site, �site 
to be lower (Table 1). Finally, the effect size of replicate copy number on replicate 
detection probability was estimated to be greater in the inhibitor models relative to 
the null models.

The Bayesian P-values from the deviance discrepancy function identified 14 sam-
ples as having replicates that were more extreme than expected under both versions 
of the null models (Table  2). These samples were characterized by having lower 
copy numbers, with one or more replicate measurements being much larger than the 
others, and they disproportionately came from the sites with the lowest measurable 
concentrations (first site with plume effect and sites farthest from the source). For 
the inhibitor models, the Bayesian P-values identified four samples having replicate 
measurements that were more extreme than expected by the model. The replicates of 
these samples were also imbalanced but to a lesser or greater degree than expected 
compared to our thinning rate estimate, inv.logit(�0) = 0.09 , suggesting heterogene-
ity in the sample-level thinning rate. WAIC favored the inhibitor models over the 
null models, with the increased number of effective parameters outweighed by the 
substantially higher log posterior predictive density (Table 3).

Our WAIC estimates using the likelihood for sample log concentrations (Table 3) 
favored the power law model over the exponential model by 28.27 and 37.46 units 
when considering and not considering inhibition, respectively. The similarity of the 
posterior modes for log sample concentrations between removal models can be visu-
alized in Supplementary Fig. S3, where estimates from the null models are nearly 
identical between exponential and power law removal, and estimates from the inhib-
itor models were nearly identical except for 2–3 data points. We provide this infor-
mation to justify using the posterior modes of sample log concentrations from the 
exponential model as data to evaluate the relative support for each release model, 
and reiterate that doing so a priori favors the exponential model to the extent that the 
posterior modes for log sample concentrations differ between removal models. Our 
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second line of evidence to discriminate between removal models is the comparison 
of the posteriors for the eDNA production rate, p0 , between the release and cooler 
models (Fig. 4). While we do not know what the sampling standard deviation, �samp , 
was in the cooler, the p0 estimates from all cooler models overlap more with the 
power law release models, particularly when inhibition is considered. Our point esti-
mate for �samp was 0.15; however, this estimate is unlikely to be accurate with only 
3 samples.

Parameter estimates with posterior standard deviations and 95% HPD intervals 
for Model I–PL can be found in Table  4. Model I–PL estimated that many repli-
cates in the range of 1.5–2.5 log10 copies were substantially undermeasured, but 
after accounting for the inhibition process, the copies available to be measured 

Fig. 2   Posterior point and interval estimates of site and sample concentration as a function of distance 
for all four models. Note, some 95% HPD intervals are discontinuous due to multimodal posterior dis-
tributions. Estimates from Models I–PL and I–E accounting for inhibitors are generally higher, and to a 
greater magnitude as distance increases. Estimates from Models I–PL and N–PL are higher at sites 2–4 
compared to Models I–PL and N–PL, respectively, due to an increasing removal rate through time
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corresponded well with the measured copy numbers (Fig.  5). In Model I–PL, the 
probability of inhibition was estimated to be inv.logit(𝛽w

0
) = 0.85 for a replicate with 

1 copy (and random effect value set to 0), with a negligible probability of inhibition 
over 300 copies/replicate (Fig. 6). The ΔCq covariate was estimated to be positively-
related to the probability of inhibition (Table 4), with a 95% HPD that did not over-
lap 0 and a posterior probability of being greater than 0 equal to 0.99.

5.3 � Simulation study A

Our ability to estimate parameters in terms of bias, coverage, and precision (CV) 
varied across parameters and models, with generally better estimates from null mod-
els over inhibitor models and exponential over power law removal models (Supple-
mentary Table S1). For the null models, coverage was roughly nominal (e.g., 95% 
CI covered the true value 95% of the time), but the detection parameters were mod-
erately biased ( −7.2 to 24.6%) and estimated imprecisely (CVs of 58.8–133.8%). 
Further, the null model with exponential removal estimated the eDNA production 
rate, p0 with minimal bias (2.8%) and a CV of 29.0%, whereas the estimate from the 
null power law removal model was positively biased by 5.2%, and less precise (CV 
of 56.6%). The sampling and measurement standard deviations, �samp and �rep , were 
estimated with minimal bias (< 3%) in the null models.

Fig. 3   Survival functions from Models I–PL and I–E, with power law and exponential survival, respec-
tively. Under the power law model, there is more eDNA estimated to be added at the source location 
relative to the exponential, and faster removal that slows down through time. The expected time at which 
eDNA reaches sites 1–6 are indicated on the plots, which were derived from our mean velocity measure-
ment
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For the inhibitor models, we saw results similar to the null models. Overall, cov-
erage was roughly nominal for the inhibitor models with the possible exception of 
reduced coverage for some parameters in model I–PL (our estimates are subject to 
some sampling variability with only 100 data sets). The detection parameters were 
biased ( −10.6 to 2.0%) and estimated imprecisely (CVs of 52.9–93.6%). The eDNA 
production rate, p0 , was estimated with modest negative bias in Model I–E with 
exponential removal ( −4.6 %) and modest positive bias in model I–PL with power 
law removal (8.6%). The p0 estimates in the inhibitor models were more precise as 
judged by the CV, likely due to the larger simulated values used in the inhibitor 
models leading to larger posterior modes. All parameters determining the probabil-
ity of inhibition were estimated with bias, particularly the intercept �w

0
 , which was 

Fig. 4   Plots of the posterior distributions of the eDNA production rate, p
0
 , from the four release models 

and four cooler models with different hypothetical sampling standard deviations, �samp (indicated with 
“SD” on the plot). For release models, ”PL” indicates “power law,” “E” indicates “exponential,” “I” indi-
cates “inhibitor,” and ‘N” indicates “null.” More overlap between particular release and cooler models 
indicates more consistency between the estimates

720

721

722

723

724

725

726

727

728

729

730



    
    

 R
EVISED PROOF

Journal : SmallExtended 10651 Article No : 632 Pages : 36 MS Code : 632 Dispatch : 13-11-2024

	 Environmental and Ecological Statistics

Fig. 5   Comparison of the relationship between measured and true copies in each replicate (left) and 
measured and available copies in each replicate (right) from Model I–PL accounting for inhibitors. In 
each plot, the posterior probability of inhibition is indicated by the color of the point estimate and 95% 
HPD intervals are depicted, some of which are discontinuous due to multimodal posteriors. In the plot 
on the left, the group of true copies measured too low with poor coverage correspond to the samples to 
which the model assigns a high posterior probability of inhibition. After accounting for inhibition (plot 
on right), the relationship between measured and available copies is roughly linear with coverage 0.87

Fig. 6   Plots depicting the effects of copy number and ΔCq on the expected probability of inhibition (pos-
terior mean and 95% HPDs), pw

i,j,k
 , and the posterior probability of inhibition, P(wi,j,k = 1) . Replicates 

from samples with no detections (complete nondetects) are colored red, and replicates without detections 
in samples where other replicates were detected (partial nondetects) are colored orange. The probability 
of inhibition declines as a function of replicate copy number, with complete and partial nondetects all 
being estimated to have very few copies (left). The probability of inhibition increases with ΔCq, particu-
larly for replicates with fewer copies (N = 25 scenario)
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negatively biased by 19.7–23.3% in the inhibitor models. As in the null models, the 
sampling and measurement standard deviations, �samp and �rep , were estimated with 
minimal bias (<3%), except for �samp in model I–PL with a bias of 5.9%.

6 � Discussion

We developed a hierarchical model for eDNA fate and transport experiments that 
accommodates more mechanistic detail about how eDNA is detected and measured 
than existing models. We also conducted an eDNA release experiment to demon-
strate the utility of this modeling approach for estimating eDNA removal parameters 
in the presence of ecological and measurement variability. Two distinctive features 
of the model are that site concentrations are modeled as the product of an eDNA 
removal process as a function of time (using the eDITH approach of Carraro et al. 
2018) and that replicate copy numbers are regarded as latent variables modeled with 
a count distribution. The latter feature has several advantages for low concentra-
tion samples and facilitates modeling detection, measurement error, and sources of 
bias as functions of the ecological quantity being measured—the discrete number 
of copies in each replicate. Using this model, we were able to provide evidence that 
the eDNA removal rate in our experiment declined through time (e.g., power law 
removal) and that the allocation of measurable copies across replicates was overdis-
persed relative to the Poisson in a subset of samples. We then developed a model for 

Table 1   Parameter point 
estimates for all four models 
applied to the field data

Model I–PL accommodates inhibitors and has power law removal, 
Model I–E accommodates inhibitors and has exponential removal, 
Model N–PL does not accommodate inhibitors and has power law 
removal, Model N–E does not accommodate inhibitors and has 
exponential removal. p

0
 was modeled in m 3 /s units and presented 

here in L/s units

Process Par Models

I–PL I–E N–PL N–E

eDITH p
0

6134.78 419.13 12, 076.28 244.69
eDITH � 0.59 . 0.91 .
eDITH � . 1431.82 . 873.94
eDITH �site 0.04 0.34 0.01 0.15
Sampling �samp 0.90 1.20 1.34 1.67
Replicate Inhibition �w

0
1.44 1.46 . .

Replicate Inhibition �w
1

− 0.02 − 0.02 . .
Replicate Inhibition �w

2
1.16 1.19 . .

Replicate Inhibition �w 3.28 3.44 . .
Inhibitor Thinning �

0
−2.31 −2.36 . .

Detection �
0

− 2.52 − 2.41 − 2.31 − 2.25
Detection �

1
2.80 2.79 1.28 1.32

Quantification �rep 0.29 0.29 0.68 0.68

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749



    
    

 R
EVISED PROOF

Journal : SmallExtended 10651 Article No : 632 Pages : 36 MS Code : 632 Dispatch : 13-11-2024

	 Environmental and Ecological Statistics

Table 2   Samples with replicates 
where Bayesian P-values from 
posterior predictive checks 
indicated lack of fit, defined as 
the P-value being less than 0.05

Samples are listed by model (“Null” and “Inhibit” without and with 
modeling inhibitors, respectively), site, and sample, along with the 
observed data for each sample replicate. Null models are N–E and 
N–PL and inhibitor models are I–E and I–PL

Model Site Sample Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

Null 1 1 2.57 66.33 62.70 3.41 3.86
Null 1 3 0 7.08 4.88 472.19 4.16
Null 1 6 125.24 71.73 4.75 121.01 5.86
Null 8 5 62.79 6.35 164.17 11.97 8.67
Null 10 1 110.24 5.66 9.56 7.31 5.53
Null 11 3 8.16 74.08 7.98 10.39 141.60
Null 11 4 68.67 7.37 7.88 11.77 6.02
Null 11 6 70.95 2.56 3.30 84.97 4.21
Null 12 1 2.31 7.94 5.57 2.64 52.09
Null 12 2 8.30 9.61 4.28 66.94 9.94
Null 12 3 42.74 5.61 0 3.24 2.38
Null 13 3 2.42 48.81 18.51 1.83 0
Null 13 4 31.04 3.61 0 87.01 4.80
Null 13 5 70.73 3.49 5.00 8.21 5.42
Inhibit 1 3 0 7.08 4.88 472.19 4.16
Inhibit 1 4 44.27 102.19 38.40 16.92 18.84
Inhibit 6 4 202.90 54.30 62.58 90.22 77.76
Inhibit 8 4 67.78 74.98 76.75 291.60 76.44

Table 3   WAIC table showing 
the WAIC, log posterior 
predictive density (lppd) and 
effective number of parameters 
(pWAIC) for all four models

Two types of WAIC are used, with a WAIC Target of “Rep” being 
the conditional WAIC at the level of replicates and a WAIC Target 
of “Samp” being the conditional WAIC at the level of samples. For 
sample-level WAIC, we were unable to incorporate the uncertainty 
in the sample concentrations, and the sample-level WAIC values are 
not directly comparable between the null and inhibitor models, see 
“Methods”

Model WAIC Target WAIC lppd pWAIC

I–PL Rep 334.96 − 33.61 133.87
I–E Rep 333.34 − 33.16 133.51
N–PL Rep 912.28 − 360.87 95.27
N–E Rep 913.20 − 360.33 96.27
I–PL Samp 219.15 − 105.75 3.83
I–E Samp 256.61 − 124.49 3.82
N–PL Samp 278.84 − 135.26 4.16
N–E Samp 307.11 − 149.87 3.69
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how eDNA inhibitors might reduce the measurable copy numbers in the replicates 
and show the pattern of overdispersion in our observed data is largely consistent 
with this model.

Treating copy numbers in replicates as count random variables provides sev-
eral advantages when site and sample concentrations are low. To date, quantitative 
eDNA analyses have typically assumed sample or replicate concentrations are nor-
mally-distributed, usually on the log scale (Carraro et  al. 2018; Espe et  al. 2022; 
Shelton et  al. 2019). Our model highlights that replicate-level measurement error 
is the product of both sampling variation when allocating copies to the replicates 
(Dube et al. 2008; Lesperance et al. 2021) and the measurement error conditioned 
on the number of copies in each replicate (due to variation in factors such as read-
ing fractional cycle numbers; Shelton et al. 2019). An implication of a count model 
for the replication process is that a normal approximation will be a less appropriate 
when measuring small copy numbers (Espe et  al. 2022) that are typical of many 
eDNA applications. Then, when sample concentrations are low enough that qPCR 
replicate-level zeros are observed, it is unknown whether a zero is observed because 
there were no target DNA copies allocated to a replicate or because the allocated 
copies were undetected (Dube et al. 2008; Lesperance et al. 2021). To compute an 
unbiased sample mean concentration in the presence of observed zeros, the replica-
tion process zeros need to be included, as do the true allocated copy numbers for 
replicates with failed detections, which are not observed.

Techniques that allow a probabilistic interpretation of zeros and non-detections 
have been recognized as critical by many disciplines, like analytical chemistry and 
public health (e.g., Chik et  al. 2018), and have been used by eDNA practitioners 
when computing the limit of detection in qPCR (Dube et al. 2008; Lesperance et al. 
2021). By conditioning detection on copies being present in replicates, and relat-
ing the detection probability to the number of copies in a replicate, our model can 

Table 4   Parameter point and interval estimates and posterior standard deviations from Model I–PL that 
accommodates inhibitors and considers power law removal

p
0
 was modeled in m 3 /s units and presented here in L/s units

Process Par Est SD Lower Upper

eDITH p
0

6134.78 3079.41 2834.56 13, 769.82
eDITH � 0.59 0.07 0.47 0.74
eDITH �site 0.04 0.03 0.01 0.12
Sampling �samp 0.90 0.10 0.75 1.13
Replicate Inhibition �w

0
1.44 0.98 − 0.24 3.65

Replicate Inhibition �w
1

− 0.02 0.01 −0.05 − 0.01
Replicate Inhibition �w

2
1.16 0.54 0.20 2.32

Replicate Inhibition �w 3.28 0.77 2.20 5.10
Inhibitor Thinning �

0
− 2.31 0.10 − 2.51 − 2.11

Detection �
0

− 2.52 1.28 − 5.63 − 0.70
Detection �

1
2.80 1.78 1.05 6.99

Quantification �rep 0.29 0.02 0.26 0.33

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776



    
    

 R
EVISED PROOF

Journal : SmallExtended 10651 Article No : 632 Pages : 36 MS Code : 632 Dispatch : 13-11-2024

	 Environmental and Ecological Statistics

probabilistically resolve these sources of zeros and produce less biased estimates 
of replicate copy numbers and sample concentrations in this situation. In practice, 
the accuracy of the resulting estimates will depend on how well model assumptions 
are met, and estimates may be very imprecise when samples have concentrations so 
low that most replicates are true sampling zeros. Further, in Simulation Study A, we 
show that the detection parameters that are a function of latent copy numbers are 
weakly identifiable, estimated with low precision and moderate bias. We assume this 
is due to the magnitude of uncertainty in the estimates of the latent copy numbers 
near zero, which is greater in the inhibitor models where the bias in the detection 
probability of one copy is larger. Therefore, the performance of this model in terms 
of bias and precision of the ecological parameters in scenarios with lower sample 
concentrations than we observed and/or greater sampling variability should be fur-
ther investigated. This approach of partitioning variation between the allocation of 
copies and measurement of copies may also be used in standard curve experiments 
(e.g., Klymus et  al. 2020) to relate Cq to the realized, instead of expected, copy 
number of standards. Doing so could reduce the nonlinearity seen in standard curve 
calibration regressions (Klymus et al. 2020) due to observing true and false zeros at 
low concentration standards.

Including latent replicate copy numbers in the model also provides a means for 
detecting deviations from Poisson variability in the replication process, and explor-
ing hypotheses about potential causes of this assumption violation. We were able 
to use posterior predictive checks to identify lack of fit in our null models consist-
ent with overdispersion in the number of copies allocated to replicates. This over-
dispersion was only seen in a subset of samples, and appeared stochastic in nature, 
with replicates tending to show a bimodal pattern of high and low measurements in 
affected samples. In theory, general overdispersion could result from sample-level 
variability in measurement error, given the number of copies allocated to each rep-
licate, but we were unable to devise a measurement error hypothesis that explained 
sample-level heterogeneity and the apparent bimodality in affected samples. Fur-
ther, we did not find general overdispersion hypotheses, such as pipetting error, to 
be plausible because most samples were consistent with Poisson replication process 
variability.

A benefit of our hierarchical modeling approach is that we can construct and 
evaluate hypotheses for plausible mechanisms of this overdispersion pattern. Using 
the common decision rule of ΔCq ≥ 3 (e.g., Hartman et al. 2005; McKee et al. 2015; 
Goldberg et  al. 2016), none of our samples would be classified as inhibited (Fig. 
S2b). However, given the general vulnerability of PCR quantification to inhibition 
(Opel et al. 2010; Sidstedt et al. 2020), the lack of a standard criterion to describe 
degrees of inhibition (Lance and Guan 2020), and variation in how different assays 
respond to the same inhibitor (Lance and Guan 2020), we suspected this decision 
rule may not be well calibrated for our assays and inhibition may have gone unde-
tected using this method. We used our extended hierarchical model to evaluate the 
hypothesis that eDNA inhibitors were reducing detection probability and measured 
copy numbers in our field data, and these inhibitor effects were stochastic, leading 
to undermeasurement of some replicates of some samples. In the model, inhibi-
tors have a continuous effect, causing undermeasurement, then failed detection, 
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depending both on the starting copy number and the magnitude of the underestima-
tion caused by the inhibitors.

We suggest that the posterior predictive checks provide support for the inhibitor 
models over the null models. The inhibitor model did not provide a clear indica-
tion of lack of fit for 13/14 of the poorly explained samples from the null model 
(Table 2), and the four samples that were identified by the posterior predictive check 
as indicating lack of fit in the inhibitor model were cases that are consistent with 
inhibition, but with a thinning rate lower or larger than our estimate of �thin = 0.09 
(assuming binomial variability). This extra-binomial variability could be accommo-
dated with a sample-level random effect in the inhibitor thinning process, or per-
haps both the probability and magnitude of inhibition could be related to the same 
latent variable representing inhibitor concentration in a sample. Conditional WAIC 
also highly favored the inhibitor model. A second line of evidence for the inhibi-
tor hypothesis is that the probability of inhibition was positively associated with the 
ΔCq covariate with a posterior probability 𝛽w

2
> 0 = 0.99 . Still, we cannot conclu-

sively rule out other causes of the overdispersion we saw in our data, and it may 
result from more than one cause.

Hypothetically interpreting our field data in light of the inhibitor model, inhi-
bition started to occur in the range of 100–400 copies/replicate. As copy number 
approached zero, between 60 and 100% of the replicates were likely to be inhibited 
(interpreting 95% CIs in Fig. 6). If inhibitors were as prevalent in our data as our 
model suggests, this would indicate that exogenous IPC Cq shifts may not always 
have high statistical power to detect inhibition at magnitudes that substantially affect 
measurements. Whether the source of overdispersion we detected was due to a 
mechanism increasing variability or one causing systematic undermeasurement, like 
inhibitors, is of high importance. The latter will cause us to systematically under-
estimate site and sample concentrations disproportionately such that as concentra-
tion declines, the rate of eDNA removal is overestimated and the sampling process 
variability is inflated (i.e., attributing inhibitor-induced variability to ecological vari-
ability). Our model provides a framework to compare alternative hypotheses, using 
either field or experimentally manipulated samples, to such extent that these hypoth-
eses imply that different data will be observed. A final caveat is that the signal of 
inhibition is eroded as copy number approaches zero because of the magnitude of 
measurement error given the available copy number. For the inhibitor model param-
eters to be identifiable, we require samples with concentrations high enough that the 
magnitude of imbalance (relative to Poisson sampling variability) across replicates 
is large relative to measurement error, but not so large that inhibition did not occur. 
Lower concentration samples are more likely to have all replicates inhibited, so no 
imbalance is observable. Our simulation results indicate that the probability of inhi-
bition parameters ( �w and �w ) were weakly identifiable for data sets similar to ours, 
and we expect they will be completely unidentifiable in many cases.

By using the eDITH model to describe eDNA removal as a function of time, 
we were able to provide evidence that the eDNA removal rate was not constant 
through time. WAIC favored the power law removal model both when we did 
and did not consider inhibition. Further, the posteriors for p0 from the power law 
release model overlapped more with the posteriors for p0 estimated in the cooler; 
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however, our cooler estimates are speculative since we do not know the sampling 
variation in the cooler. Presumably, the turbidity of the stream could increase 
the sampling standard deviation and our point estimate of the sampling standard 
deviation in the cooler was 0.15, much lower than estimated in the release mod-
els; however, other factors likely need to be considered and the cooler standard 
deviation was estimated with only three samples. If the power law model is closer 
to the truth, the eDNA production rate parameter, p0 , is challenging to estimate 
given our study design and the magnitude of sampling variance we encountered. 
In Simulation Study A, we see that p0 is estimated with negligible bias in the 
exponential removal models, but moderate positive bias in the power law removal 
models. Then, the CV is roughly twice as large for the power law removal mod-
els. We attribute this to the challenge of (1) extrapolating the pattern in observed 
concentrations back to the source location when concentration is declining rap-
idly (Fig. 3) and (2) a large sampling standard deviation. We believe these chal-
lenges also extend to the more appropriate Weibull removal model, where we 
found that p0 and the Weibull scale parameter were effectively jointly unidentifi-
able with our data, but identifiable if we simulated similar data with a far lower 
sampling standard deviation. Regardless of the true removal model, using the 
exponential model if the removal rate decreases through time will negatively bias 
the estimated eDNA production rate at the source, which will be propagated to 
downstream metrics like site abundance.

One factor that introduces some unaccounted for uncertainty to our evidence for 
a declining removal rate is that we do not know the reason that the concentration 
at the first site was estimated to be lower than the second site. If the mechanism(s) 
causing the concentration at the first site to be undermeasured causes the concentra-
tion at the second site to be overmeasured, this could cause the data to appear to 
be undergoing a declining rate of removal. Conversely, if this mechanism caused 
the concentration at sites beyond the first site to also be undermeasured, we would 
have underestimated the support for the power law removal model over the exponen-
tial. Our hypothesis is that concentration at the first site was undermeasured because 
eDNA did not immediately dissolve throughout the water column (Wood et al. 2020, 
2021), and the bucket we used to collect water to then split into the six samples at 
the first site disproportionately sampled water where the eDNA concentration was 
lower than average for that site. Our release mechanism deposited water from the 
cooler on top of the stream and we expect it took some time for the eDNA to reach 
lower in the water column due to gravitational settling (Harrison et al. 2019). This 
effect has been documented along the horizontal dimension in rivers (Wood et al. 
2020, 2021; Laporte et  al. 2020), where it has been termed a “plume effect.” We 
suggest a similar pattern may occur in the vertical dimension when sampling very 
close to an eDNA source, depending on where in the water column water is sam-
pled. When we sampled the first site, the water with the highest concentration of 
eDNA may have flowed over the bucket and we may have disproportionately sam-
pled water with a lower concentration of eDNA. If this was the mechanism causing 
underestimation at the first site, we do not believe it would cause overestimation 
at the second site. Therefore, we suggest that while not conclusive, our study adds 
to the evidence for the hypothesis that, in the context of a mass-balance model of 
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eDNA production, transport, and decay, the removal term is large and the transport 
term is small (Tillotson et al. 2018).

Finally, we discuss implications of our model and results for applications of the 
eDITH model to observational data and for occupancy analyses using detection data 
only. To our knowledge, the eDITH model has only been applied to observational 
data sets where: (1) the concentration observed at one site is the product of multi-
ple upstream sites with different eDNA production rates and (2) release locations 
are estimated because they are not known. In contrast, our study system used a sin-
gle, known release location. If eDNA decay declines at the rate we estimated, the 
majority of the total eDNA produced in a river network would be ignored, and the 
resulting site concentrations would be underestimated. Further, this underestimation 
would be predominately close to the sources, so measured site concentrations would 
not be related to true site concentrations by the same proportionality constant across 
space (inhibition could also cause deviations from a fixed proportionality constant). 
The assumptions of the eDITH model are hard to scrutinize given the number and 
magnitude of sources of ecological and measurement variability and the number of 
parameters and latent variables that must be estimated. We demonstrated how some 
assumptions can be better tested in more simple experiments and recommend more 
and better-controlled experiments be conducted in order to better understand the 
reliability of this approach when applied at large spatial scales.

While we developed our model in the context of an eDNA release experiment 
with a single source, eDNA production at a site can be conditioned on latent occu-
pancy states. This model can also be used for occupancy-type designs with inde-
pendent sites, with site concentration conditioned on latent occupancy states. 
A principal implication of our model for natural resource management is that for 
occupancy analyses, site, sample, and replicate variability in concentration and copy 
number induce detection heterogeneity at all three of these levels. If this variabil-
ity is not modeled using either observed covariates or random effects, ecological 
inference may be unreliable. Perhaps the most important effect is that if (1) sites 
vary in concentration and (2) at least some site concentrations are low enough to 
lead to missed detections, there will be site heterogeneity in detection probability 
and subsequent underestimation of the occupancy probability, and thus the potential 
for misguided natural resource decision making (Royle and Nichols 2003). Also of 
importance is that the reliability of inference from false positive occupancy mod-
els depends on how well heterogeneity in true positive detection is accounted for 
(McClintock et al. 2010; Ferguson et al. 2015).

Replacing our eDITH process with processes for independent site occupancy and 
concentration conditioned on site occupancy would allow for the occupancy states 
and concentrations at unmeasured sites to be jointly estimated. A caveat, though, 
is that the reliability of the concentration estimates at sites with no detections (dis-
proportionately those with the lowest concentrations) will likely depend on the 
adequacy of the distribution used to model site concentration variability (e.g., log-
normal variability in site concentration). Further, the performance of such a model 
will depend on the abundance and reliability of copy number data. Even if not used 
in practice for occupancy analyses, our model can be used to assess how reliable 
ecological inference is in the presence of these forms of detection heterogeneity. 
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Ultimately, biostatistical approaches such as those presented in this study help 
resolve uncertainties associated with eDNA fate and transport as well as qPCR 
detection and measurement of scarce molecules. Implementation of these types of 
approaches is needed to more fully take advantage of the potential for eDNA analy-
sis to contribute natural resource management (Kelly et al. 2023).

Appendix: Lab methods and selected results

Methods: assay development

Assays designed for eDNA studies using qPCR generally target short amplicons that 
are between 50 and 150 base pairs (bp) in length (Goldberg et al. 2016; Rees et al. 
2014) because PCR efficiencies are higher for shorter amplicons (Bustin and Hugget 
2017) and because shorter DNA fragments tend to be more available for detection in 
aquatic environments than longer fragments (Bylemans et al. 2018). To explore dif-
ferences in transport dynamics of short and long DNA fragments, two probe-based 
qPCR assays were developed for use in this study. Both assays target the T. arcticus 
cytochrome oxidase subunit 1 gene (cox1) and share the same reverse primer. The 
first unique set of forward primer and positive-sense strand probe produces a 128 bp 
amplicon while the second set produces a 468 bp amplicon. In silico validation was 
performed by aligning all available T. arcticus cox1 gene from NCBI and BOLD 
databases and identifying conserved regions of DNA greater than 15 base pairs in 
length. We then used NCBI’s nucleotide BLAST to remove areas with high similar-
ity to any off-target sequences. The primer sequences that were selected with the 
appropriate thermal properties minimized similarity with sequences outside of the 
Thymallus genus. The only teleost fish (outside of the Thymallus genus) with fewer 
than three base pair mismatches with at least one primer was Liopropoma olneyi, 
a Caribbean reef fish. NCBI Primer-BLAST was used to confirm this result in the 
nucleotide (nr) database of teleost fishes using default stringency and specificity set-
tings. Notably, while the assays designed here can reliably detect T. arcticus, there 
is also significant sequence similarity with other members of the Thymallus genus. 
Therefore, these assays should not be considered species specific when used in water 
bodies that may contain other members of Thymallus.

Each assay’s annealing temperature was optimized using temperature-gradient 
qPCR (from 58 to 67 ◦C), wherein the optimal annealing temperature was that which 
minimized the Cq when amplifying replicate synthetic DNA standards of 5000 gene 
copies. The optimal primer ratios were determined similar to Wilcox et al. (2015). 
The limit of detection (LOD) and limit of quantification (LOQ) were determined in 
both an ideal sample matrix (i.e., molecular grade water) and in a relevant sample 
matrix (extracted water from the study creek) using the eLowQuant method of Les-
perance et al. (2021).

The assays were validated in  vitro with DNA extracted from T. arcticus from 
the study creek and from tissues of regional origin of Salvelinus fontinalis, which 
do occur in our study reach, and other salmonids found in nearby waters includ-
ing Oncorhynchus mykiss, O. clarkii bouvieri, O. clarkii lewisi, Salmo trutta, and 
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Prosopium williamsoni. Tissue validation was performed with 10 replicates each. 
In situ validation was performed on eDNA water samples collected from the brood 
stock reservoir (known positive source) and from the study creek water collected 
above the barrier prior to the start of the experiment (known negative source).

Results: assay comparison

We observed substantially higher detection and copy number measurements using 
the short amplicon compared to the long amplicon assay. For the long amplicon 
assay, 37.5% of replicates were nondetections and 32.1% of samples failed to detect 
eDNA across all 5 replicates, compared to 6.2 and 3.8%, respectively, for the short 
amplicon assay. The short amplicon replicate-level quantitative data ranged from 
1.71 to 4.90 log10 copies/L and −0.29 to 2.90 log10 copies/reaction and the long 
amplicon replicate-level quantitative data ranged from 2.22 to 5.91 log10 copies/L 
and 0.22 to 3.91 log10 copies/reaction. Due to the poorer performance of the long 
amplicon assay, we used the short amplicon assay data for analysis.

Methods: DNA extraction

All eDNA and tissue samples were extracted with Qiagen DNeasy Blood and Tis-
sue Kits (cat. #69504) with Qiagen DNeasy Lyse and Spin Baskets (cat. #19598) 
with minimal alterations of the manufacturer’s protocol. DNA was eluted in 400 μ L 
of Qiagen Buffer AE. All DNA extraction batches included an extraction negative 
control using only extraction kit reagents. These extraction blanks were otherwise 
handled and analyzed identically to samples.

Methods: quantitative PCR

Assays were run on a BioRad CFX 96-Touch or BioRad Opus thermal cycler (Her-
cules, CA). Reactions took place in BioRad Hard-Shell®optical 96-well plates (cat. 
#HSP9601) sealed with BioRad Microseal®optical adhesive film (cat. #MSC1001). 
The thermal cycle was: 95 ◦ C for 15 min then 50 cycles of 94 ◦ C for 15 s and 60 
◦ C for 60 s. Reactions of 20 μ L included 10 μ L of Qiagen Quantitect Master Mix, 3 
μ L sterile water, 0.5 μ M of forward and 0.4 μ M of reverse primer, 0.25 μ M FAM-
labeled hydrolysis probe, and 4 μ L of DNA extract. The two T. arcticus assays were 
not multiplexed together, but were run in separate reactions multiplexed with an 
internal positive control (IPC, see below). Every 96-well plate run as part of this 
study had the same duplicated (two replicates) controls: six point 1:10 dilution T. 
arcticus synthetic standard curve ranging from 4e0 to 4e5 target DNA copies, no-
template control (NTC), and internally blocked negative control (IBC). FAM and 
VIC fluorescence values were ROX-normalized prior to baseline correction and 
amplification detection (Patrone et al. 2020) using R v4.0.3 statistical software (R 
Core Team 2021). Successful amplification of DNA was defined as any curve for 
which a feasible solution with less than 10% transformation error was found for the 
non-linear optimization transformation presented in Patrone et al. (2020).
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